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ABSTRACT

Multi-scale exposure fusion is an efficient way to fuse differ-
ently exposed low dynamic range (LDR) images of a high
dynamic range (HDR) scene into a high quality LDR im-
age directly. It can produce images with higher quality than
single-scale exposure fusion, but has a risk of producing ha-
lo artifacts and cannot preserve details in brightest or dark-
est regions well in the fused image. In this paper, an edge-
preserving smoothing pyramid is introduced for the multi-
scale exposure fusion. Benefiting from the edge-preserving
property of the filter used in the algorithm, the details in the
brightest/darkest regions are preserved well and no halo arti-
facts are produced in the fused image. The experimental re-
sults prove that the proposed algorithm produces better fused
images than the state-of-the-art algorithms both qualitatively
and quantitatively.

Index Terms— Exposure fusion, image pyramid, gradi-
ent domain guided image filter, edge-preserving smoothing,
high dynamic range

1. INTRODUCTION

Most natural scenes have larger dynamic ranges than the dy-
namic range that can be recorded by a regular camera with a
single shot. As a result, an image captured by the camera is
not the same as what human eyes see. This challenge can be
addressed by taking several differently exposed low dynam-
ic range (LDR) images for the same scene and merging them
together [1, 2]. The technique can be used to achieve that
what we captured is what our human eyes see. Such an imag-
ing technique is called HDR imaging [3, 4]. Due to possible
camera movement and moving objects, all the LDR images
are first aligned [5] and all the moving objects are synchro-
nized according to a pre-defined reference image [6, 7]. The
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synchronized multiple exposure images are then adopted to
synthesize a high dynamic range (HDR) image [2]. The HDR
image is finally tone mapped as an LDR image so as to be
displayed on a conventional LDR display [8, 9, 10, 11].

There is an alternative approach called exposure fusion
which fuses an exposure bracket into a high quality LDR
image directly. Mertens et al. [12] used a Laplacian pyra-
mid [13] to decompose all the differently exposed images and
a Gaussian pyramid [13] to smooth the weighted maps that
are computed considering the contrast, saturation and well-
exposedness. Shen et al. [14] proposed a generalized random
walks framework based exposure fusion algorithm to achieve
an optimal balance between local contrast and color consis-
tency while combining the scene details revealed under dif-
ferent exposures. Ma et al. [15] introduced a patch-wise ex-
posure fusion approach. In this approach, the patches in the
input images are decomposed into three components: signal
strength, signal structure and mean intensity. The three com-
ponents are processed separately and finally a fused image is
constructed. Exposure fusion neither requires lighting con-
ditions of all the LDR images to be the same nor requires
knowledge of exposure times as required by the HDR imag-
ing [1, 2]. However, there is no fine detail extraction compo-
nent in the exposure fusion algorithms while fine details can
be manipulated by existing tone mapping algorithms [10, 11].
Based on such an observation, a detail extraction component
was proposed in [16] to enhance the existing exposure fusion
algorithms. Recently, an interesting subjective user study was
conducted in [17] to evaluate the quality of images generated
by the above exposure fusion algorithms. It was found that no
single state-of-the-art exposure fusion algorithm produces the
best quality for all test images. The algorithm in [12] achieves
the best performance on average, and the algorithm in [16] is
the second best on average.

Even though the global contrast is preserved better by the
existing multi-scale exposure fusion algorithms, fine detail-
s in brightest/darkest regions could be lost if there are too
many scales. It is thus necessary to properly select the num-
ber of scales to preserve both the global contrast and fine de-



tails in the brightest/darkest regions. Unfortunately, this is
impossible using the existing Gaussian pyramid in [13] due
to possible halo artifacts. It is desired to develop a new pyra-
mid for exposure fusion. Existing edge-preserving smooth-
ing techniques [10, 18, 19, 20, 21, 22] are good at reducing
or avoiding halo artifacts from appearing in images that are
produced using them. Intuitively, edge-preserving smooth-
ing techniques might be applied to design an exposure fusion
algorithm to fuse differently exposed images without halo ar-
tifacts. However, it was indicated in [12] that it is very diffi-
cult or even impossible to use the edge-preserving smoothing
techniques such as the bilateral filter in [18] to design an ex-
posure fusion algorithm without producing halo artifacts. In
addition, the exposure fusion algorithm in [23] which is based
on the guided image filter (GIF) in [19] indeed produces visi-
ble halo artifacts in fused images. It seems that the possibility
of using edge-preserving smoothing techniques to design an
exposure fusion algorithm without producing halo artifacts is
very low. Fortunately, the exposure fusion algorithm in [23]
is only a two-scale one and it was shown in [12] that halo
artifacts could be reduced/avoided if the number of scales is
increased. Thus, there is still a chance to design a new edge-
preserving smoothing pyramid to replace the existing Gaus-
sian smoothing pyramid for the multi-scale exposure fusion.

In this paper, an elegant edge-preserving smoothing pyra-
mid is proposed for the multi-scale exposure fusion. All the
differently exposed images are decomposed using the Lapla-
cian pyramid as in [12]. A weighting map is computed for
each image by considering the contrast, saturation and well-
exposedness of each pixel as in [12]. Instead of using the
Gaussian pyramid to smooth the weighting maps as in [12],
an edge-preserving smoothing pyramid is introduced to s-
mooth the weight maps. Particularly, the new edge-preserving
smoothing pyramid is designed using the gradient domain
GIF (GGIF) in [22] with the guided images being selected
as the luminance components of the differently exposed im-
ages. The structure of the luminance component of each in-
put image is transferred to the corresponding weight map by
the GGIF. With the GGIF based pyramid, the details in the
brightest and darkest regions are preserved much better than
[12]. Experimental results show that the proposed algorithm
indeed produces better fused images than the state-of-the-art
algorithms from both subjective and objective points of view.
Overall this paper has the following three major contribution-
s: 1) an edge-preserving smoothing pyramid; 2) a state-of-
the-art multi-scale exposure fusion algorithm; and 3) a novel
application of edge-preserving smoothing techniques.

The remainder of this paper is organized as follows. De-
tails on smoothing of weight maps via the GGIF is provided
in the next section. The edge-preserving smoothing pyramid
based exposure fusion is proposed in the section 3, followed
by the experimental results of the proposed algorithm with
comparison to several other state-of-the-art algorithms in Sec-
tion 4. Finally Section 5 concludes this paper.

2. SMOOTHING OF WEIGHT MAPS VIA THE GGIF

2.1. Construction of weight maps

Given a set of differently exposed images Ik with the sub-
script k indexing the image number. The image set contains
flat, colorless regions due to under- and over-exposure. All
these regions should give less weight, while well-exposed re-
gions containing bright colors and details should give more
weight. There are many interesting ways to define the weight
maps. To illustrate advantage of the edge-preserving smooth-
ing pyramid with respect to the Gaussian pyramid, the weight
maps in [12] is adopted in this paper.

Let p be a pixel position. There are three quality mea-
sures in [12], Ck(p), Sk(p), and Ek(p) measure contrast, col-
or saturation, and well-exposedness of pixel Zk(p), respec-
tively. Ck(p) is obtained by applying a Laplacian filter to
the gray-scale version of each image. Sk(p) is computed as
the standard deviation within the R, G and B channel. Ek(p)
is yielded by multiplying the well-exposedness of each color
channel obtained by applying a Gaussian curve to each chan-
nel separately. The product of the three quality measure is
denoted as W̃k(p). The weight map is then constructed as
Wk(p) = W̃k(p)/

∑N
k′=1 W̃k′(p).

2.2. Edge-preserving smoothing of weight maps

The weight map Wk(p) was smoothed using the Gaussian fil-
ter in [12]. In the proposed algorithm, it is smoothed using the
GGIF [22] with the guidance image as the luminance compo-
nent of the image Ik. Compared with the Gaussian filter in
[12], the GGIF has two advantages. One is that edges are pre-
served better by the GGIF. Thus halo artifacts can be avoided
even though the number of layers is reduced in the proposed
exposure fusion algorithm. The other is that the structure of
the luminance component of each input image is transferred
to the corresponding weight map. As a result, fine details in
the brightest/darkest region are preserved much better using
the proposed algorithm.

The weighted map Wk(p) is decomposed into two parts
as follows:

Wk(p) = Wk,b(p) +Wk,d(p), (1)

where Wk,b(p) is a base layer formed by homogeneous re-
gions with sharp edges, Wk,d(p) is a detail layer formed by
fine details.

Let Ωζ(p) be a square window centered at the pixel p of
a radius ζ. It is assumed that Wk,b(p) is a linear transform of
the luminance component Yk in the window Ωζ(p

′):

Wk,b(p) = ak,p′Yk(p) + bk,p′ ,∀p ∈ Ωζ(p
′), (2)

where ak,p′ and bk,p′ are two constants in the window Ωζ(p
′).



The values of ak,p′ and bk,p′ are obtained by minimizing
the following cost function E(ak,p′ , bk,p′):∑

p∈Ωζ(p′)

[(ak,p′Yk(p) + bk,p′ −Wk(p))2 (3)

+ λ · (ak,p′ − γp′)2/ΓYk(p′)],

where λ is a regularization parameter penalizing large ak,p′ .
ΓYk(p′) is and γp′ are two edge aware weighting based on
normalized two-scale neighbourhood variance σ(p′), defined
as follows:

ΓYk(p′) =
1

M

N∑
p=1

σ2
Yk

(p′) + ε

σ2
Yk

(p) + ε
, (4)

γp′ =
1

1 + e
η(σ2

Yk
(p′)− ¯µ

σ2
Yk

)
, (5)

whereM is the total number of pixels in an image. ε is a small
constant and its value is selected as (0.001 × L)2 while L is
the dynamic range of the input image, ¯µσ2

Yk

is the mean value

of all σ2
Yk

(p), η is calculated as 4/( ¯µσ2
Yk

−min(σ2
Yk

(p))).

3. FUSION OF DIFFERENTLY EXPOSED IMAGES

3.1. Laplician pyramids of differently exposed images

Given the set of differently exposed images Ik. The Gaus-
sian pyramids of the k-th weight map Wk and the Laplacian
pyramids of the k-th input image Ik are produced for all k
using the method in [13]. Let the l-th layer of the Gaussian
pyramid and the Laplacian pyramid be defined as G{I}(l)k and
L{I}(l)k . In G{I}(l)k , the first layer G{I}(0)

k is the input im-
age, the l(≥ 1) layer G{I}(l)k is a down-sampled Gaussian
smoothed version of the (l − 1)th layer G{I}(l−1)

k . In the
Laplacian pyramid, the l-th layer L{I}(l)k is generated by de-
ducting the up-sampled version of G{I}(l+1)

k from G{I}(l)k .
Define a constant κ as blog2 min(r, c)c, wherebxc returns

the largest integer which is smaller than or equal to x. r and
c are the number of pixel rows and columns of the input im-
age. We shall now evaluate the influence of the pyramid layer
to the Gaussian pyramid and the proposed edge-preserving s-
moothing pyramid by testing two image sets “treeunil” and
“tower”. In the proposed edge-preserving smoothing pyra-
mid, the radius ζ is selected as 1, 2, 4, 8 for κ, (κ−1), (κ−2),
(κ−3) respectively, and λ is set to 1/1024. The objective met-
ric in [17] is used to evaluate the quality of the fused images,
with results summarized in Table 1. From the table, it can be
found that when the number of layers is selected as (κ − 2),
fused images have the highest scores. Also from the table, it
can be concluded that with layer less than (κ − 1), the ob-
jective quality of the fused image with the Gaussian pyramid
could be dropped. As shown in Fig. 1, there are halo arti-
facts (the color of the sky becomes brighter near the trees and

mountains) if the number of layers is less than κ. Thus, the
number of layers is selected as κ in [12] while it is selected as
(κ− 2) in the proposed algorithm.

Table 1. MEF-SSIM of two different pyramids.
κ κ− 1 κ− 2 κ− 3

Gaussian 0.9858 0.9870 0.9876 0.9818
GGIF 0.9859 0.9883 0.9904 0.9878
Gaussian 0.9499 0.9583 0.9525 0.9365
GGIF 0.9497 0.9603 0.9628 0.9555

(a) κ (b) (κ− 1) (c) (κ− 2)

(d) Zoom in of (a) (e) Zoom in of (b) (f) Zoom in of (c)

Fig. 1. Comparison of different layers with image set “treeu-
nil” for the Gaussian pyramid.

3.2. GGIF pyramids of weight maps

The weight maps of all the different exposed images Ik are
first calculated using equation (??), and they are then used
to produce the corresponding Gaussian pyramids G{W}(l)k .
The GGIF pyramids of the weight maps are finally obtained
as follows:

Through solving the optimization problem in equation (3),
the optimal values of a(l)

k,p′ and b(l)k,p′ are obtained. The final

value of W (l)
k,b(p) is then given as follows:

W
(l)
k,b(p) = ā

(l)
k,pY

(l)
k (p) + b̄

(l)
k,p, (6)

where ā(l)
k,p and b̄(l)k,p are the mean values of computed as a(l)

k,p′

and b(l)k,p′ in the window Ωζ(p
′), respectively.

3.3. Fusion of differently exposed images

Once the Laplacian pyramids of the k-th input image L{I}(l)k
and the edge-preserving pyramid of the weighing maps
E{W}(l)k are constructed, a Laplacian pyramid of the resul-
tant fused image R can be obtained via:

L{R}(l)(p) =
N∑
k=1

E{W}(l)k (p)L{I}(l)k (p), (7)



(a) Result by [14] (b) Result by [16] (c) Result by [23] (d) Result by [15] (e) Result by [12] (f) Result by ours

(g) Zoom in of (a) (h) Zoom in of (b) (i) Zoom in of (c) (j) Zoom in of (d) (k) Zoom in of (e) (l) Zoom in of (f)

Fig. 2. Comparison of different exposure fusion algorithms with image set “treeunil”.

(a) Result by [14] (b) Result by [16] (c) Result by [23] (d) Result by [15] (e) Result by [12] (f) Result by ours

(g) Zoom in of (a) (h) Zoom in of (b) (i) Zoom in of (c) (j) Zoom in of (d) (k) Zoom in of (e) (l) Zoom in of (f)

Fig. 3. Comparison of different exposure fusion algorithms with image set “tower”.

and the final resultant image can be obtained by reconstruct-
ing the Laplacian pyramid L{R}.

4. EXPERIMENTAL RESULTS

In this section, the proposed exposure fusion algorithm is
compared with five state-of-the-art exposure fusion algo-
rithms respectively given in [12], [16], [23], [14], [15]. A-
mong these five algorithms, the one in [12] is the best ex-
posure fusion algorithm, according to the subjective quality
assessment for multi-exposure image fusion in [17]. The al-
gorithm in [16] is the second best and it includes a unique de-
tail enhancement component. The algorithm in [23] is a two-
scale exposure fusion algorithm and it is also based on edge-
preserving smoothing technique. The algorithms in [14, 15]

are two single-scale exposure fusion algorithms which attracts
lots of attention.

Table 2. Comparison of six different algorithms on preserv-
ing global contrast and details in saturated regions as well as
avoiding halo artifacts.

Algorithm Global contrast No halo
Details in

saturated regions
[14]

√ √

[16]
√ √

[23]
√ √

[15]
√ √

[12]
√ √

Ours
√ √ √



(a) Result by [14] (b) Result by [16] (c) Result by [23] (d) Result by [15] (e) Result by [12] (f) Result by ours

(g) Result by [14] (h) Result by [16] (i) Result by [23] (j) Result by [15] (k) Result by [12] (l) Result by ours

(m) Result by [14] (n) Result by [16] (o) Result by [23] (p) Result by [15] (q) Result by [12] (r) Result by ours

Fig. 4. Comparison of different exposure fusion algorithms with image sets “BeligumHouse”, “SevenEleven” and “Memorial”.

Five sets of differently exposed images are tested. The ex-
perimental results are shown in Figs. 2-4. The performances
of the six algorithms are summarized and listed in Table 2.
From all these resultant images, it can be observed that the
proposed algorithm can generate fused images with both good
global contrast and good details in saturated regions. The al-
gorithm in [14] can preserve details without producing halo,
but the global contrast is not preserved well. The algorithm
in [16] can enhance details of fused image, but the details in
saturated region are still lost, e.g. the clouds in Fig. 2(h). The
algorithm in [23] is an edge-preserving filter based algorith-
m. It is seen that it can preserve details in brightest/darkest
regions well, but it suffers from halo artifacts, as demonstrat-
ed in Figs. 2(c), 3(c), 4(c) and 4(i). The algorithm in [15]
preserves details in the brightest/darkest regions well but it
also suffers from halo artifacts, as illustrated in Figs. 2(d),
4(d) and 4(j), and the global contrast is not preserved well.
The algorithm in [12] is based on the Gaussian pyramid, it is
seen that the global contrast is preserved well but details in
brightest and darkest regions are not preserved well in several
fused images. From zooming in patches in Fig. 2, it can be
observed that the algorithms in [16, 15, 12] also suffers from
color distortion. The objective metric in [17] is also adopted
here to compare the different algorithms, with scores given in
Table 3. From Table 3, it can be found that the proposed edge-
preserving smoothing pyramid based exposure fusion algo-
rithm ranks first in 4 sets of tested images and its overall av-
erage also ranks first. Thus, the proposed algorithm produces

better fusion images than the state-of-the-art algorithms from
both subjective and objective points of view. On the other
hand, it should be mentioned that the complexity of the pro-
posed algorithm is higher than other algorithms.

Table 3. MEF-SSIM of six different algorithms.
Set 1 Set 2 Set 3 Set 4 Set 5 Average Rank

[14] 0.904 0.954 0.945 0.960 0.958 0.944 6
[16] 0.925 0.956 0.952 0.944 0.954 0.946 5
[23] 0.956 0.986 0.956 0.971 0.980 0.970 3
[15] 0.941 0.980 0.965 0.960 0.971 0.963 4
[12] 0.950 0.986 0.974 0.969 0.976 0.971 2
Ours 0.963 0.990 0.977 0.975 0.978 0.977 1

5. CONCLUSION AND REMARKS

In this paper, an edge-preserving smoothing pyramid has been
proposed for the multi-scale exposure fusion. Experimen-
tal results show that the proposed algorithm produces better
fusion images than the state-of-the-art algorithms. It can be
expected that the proposed pyramid is also useful in other im-
age fusion applications, and other popular edge-preserving s-
moothing techniques can be applied to design a similar expo-
sure fusion algorithm.

It is worth noting that the complexity of the proposed al-
gorithm could be an issue for mobile devices. Fortunately,



the complexity could be reduced by using a hybrid pyramid.
The gradient domain guided image filter (GGIF) is only used
in a few layers with the smallest sizes while the Gaussian fil-
ter is used in all other layers. The coefficients of the GGIF
is only computed at the layer with the smallest size and they
are upsampled to produce the coefficients at the other layers.
As such, a good trade-off between the quality and complexity
can be obtained.
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