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Abstract. Edge preserving smoothing is a technique to decompose an
image into two layers - one smoothing layer and one detail layer. It is an
important image editing tool. The edges are preserved in the smoothing
layer and details are decomposed into the detail layer. In this paper,
we propose a content adaptive L0 smoothing method. Unlike common
smoothing schemes, we use a perceptual based content adaptive weighted
fidelity term. The algorithm gives a larger weight to the region with
more information, which is most likely edges, and gives a smaller weight
to the region with less information, which is most likely a flat area. So
the resulting smoothed image can preserve more edges and smooth the
smoothing areas better. Experimental results prove that the proposed
method can have better results than existing L0 smoothing method.

Keywords: image smoothing, SSIM, L0 sparsity, detail enhancement,
perceptual, content adaptive.

1 Introduction

Edge preserving smoothing is an important image editing method, which has
wide range of applications in image processing and computer vision. With an
edge preserving smoothing scheme, an input image is decomposed into two layers:
a base layer and a detail layer. The details are decomposed into the detail layer,
while the edges are decomposed into the base layer.

Recently, a lot of edge preserving smoothing schemes has been proposed. The
most widely used edge preserving smoothing scheme is bilateral filter [1] involving
two filters, one domain filter and one range filter. The range filter can preserve
the edges. In [2], Farbman et al. proposed a weighted least squares based edge-
preserving decompositions scheme. In [9], He et al. proposed an edge preserving
scheme named guided filter that filters the image by considering the content of
a guidance image.
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Xu et al. proposed an L0 norm based smoothing scheme [3]. It was shown
experimentally in [3] that an L0 norm based scheme could get better results.
Further they developed an improved L0 norm based scheme which can smooth
images with textured surfaces [4]. In [5], Shen et al. proposed an L0 based
smoothing scheme. Different from [3, 4], they used L1 fidelity instead of L2 fi-
delity which was used in [3,4]. In [6], Kou et al. proposed an L0 smoothing based
detail enhancement scheme for fusion of differently exposed images.

Structural similarity (SSIM) is a perceptual based metric for measuring the
similarity between two images. Different from the most widely used measuring
metric - mean squared error (MSE), SSIM can penalize errors in accordance
with their visibility. In [7], Yeo et al. found the relationship between SSIM and
MSE and used SSIM to replace MSE in the rate-distortion optimization in video
encoding. As a result, they achieved better compression while maintaining the
same perceptual quality. Inspired by their scheme, we replace MSE by SSIM in
L0 smoothing. Compared with the original L0 smoothing optimization problem,
our optimization problem gives larger weights to the regions with larger vari-
ances, which are most likely edges, while smaller weights to the regions with
smaller variances, which are most likely flat areas. The new scheme can preserve
more edges and smooth the smoothing areas better in the smoothed image. Ex-
perimental results prove that the proposed method can give better results than
existing L0 based smoothing method.

The remainder of this paper is organized as follows. In the next section, we
introduce the optimization problem of our L0 smoothing scheme. In Section 3,
we present an approximation solver of the problem in Section 2. In Section 4 our
experimental results are illustrated to verify the performance of our proposed
schemes, and finally the paper is concluded in Section 5.

2 Using SSIM in L0 Smoothing

SSIM measures the similarity between two images by the following formula [8].

SSIM(m,n) =
( 2μmμn + c1
μm

2 + μn
2 + c1

)( 2σmn + c2
σm

2 + σn
2 + c2

)
(1)

where m and n are two images or two image regions, μm and μn are the averages
of m and n, σ2

m and σ2
n are the variances of m and n respectively, σmn is the

covariance of m and n, c1 = (κ1L)
2 and c2 = (κ2L)

2 are two constants to
stabilize the division with weak denominator, κ1 = 0.01 and κ2 = 0.03, L is the
peak value of the two images. For a 8-bit image, L is 256.

In [7], it was concluded that

dSSIM =
1

SSIM

≈ 1 +
MSE

2σm
2 + c2

(2)
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where dSSIM is the derivative of SSIM. It is observed from (2) that dSSIM is a
weighted MSE, and the weight is 2σm

2 + c2, where σm is the variances of m.
The original L0 smoothing optimization problem in [3] is

min
S

{
λ · C(S) +

∑
p

(Sp − Ip)
2
}

(3)

where λ is a smoothing parameter, which can adjust the weight of the two parts
to control the smoothing. Starting from the element at position (1, 1) of a matrix,
we can count the elements of the matrix in an order from left to right and then
top to bottom. The subscript p denotes the p-th element of the matrix from such
counting. Sp is the p-th pixel in image S, Ip is the p-th pixel in image I. C(S)
is the L0 norm of the gradient of S, which is expressed as

C(S) = #{p∣∣ |∂xSp|+ |∂ySp| �= 0} (4)

where # stands for the number of p which satisfies |∂xSp| + |∂ySp| �= 0, that is
the L0 norm.

A smaller value of the first term in (3) makes the resulting image S smoother,
while a smaller value of the second term makes the image S more similar to the
input image I. λ is a smoothing parameter to control the weight of the two terms.

We give different weights to different pixels based on their perceptual impor-
tance. Then the optimization problem in (3) is re-written as

min
S

{
λ · C(S) +

∑
p

Wp(Sp − Ip)
2
}

(5)

where Wp is the weight of pixel p.

Wp =

1
N

∑
p′

1
2σ2(p′)+c2

1
2σ2(p)+c2

=
1

N

∑
p′

2σ2(p) + c2
2σ2(p′) + c2

(6)

where N is the number of pixels in the image. σ2(p) is the variance of the pixels
in the neighborhood of the p-th pixel. p′ stands for all the p in the image. After
numerous experimental test, we use a 9× 9 neighborhood in this paper.

3 Solver

Note that there is a discrete counting metric C(S) in (5) and the optimiza-
tion problem is not convex. So it is very difficult to solve it. As in [3], we change
the optimization problem by minimizing the following problem to get an
approximation solver
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min
S,h,v

{
λ · C(h, v) +

∑
p

{
Wp(Sp − Ip)

2 + β
(
(∂xSp − hp)

2

+ (∂ySp − vp)
2
)}

}
(7)

where C(h, v) = #{p∣∣ |hp|+ |vp| �= 0}, β is a parameter controlling the similarity
between h, v and ∂xS, ∂yS. h, v are auxiliary matrices to solve S. hp and vp are
the p-th element of h and v respectively. When β is large enough, the optimiza-
tion problem (7) is equivalent to Eq. (5). So we can get the solution of Eq. (5)
by solving (7).

Similar to [3], the problem (7) is solved through alternatively minimizing (h, v)
and S. In each pass, one set of the variables is fixed with values obtained from
the previous iteration. β is set as a small value β0 at the beginning, and it is
multiplied by a constant κ each time. The process ends when β is larger than
βmax. The details are given as below.

Computing S when h and v are known: The S estimation subproblem
corresponds to minimizing

min
S

{∑
p

{
Wp(Sp − Ip)

2 + β
(
(∂xSp − hp)

2

+ (∂ySp − vp)
2
)}

}
(8)

Following similar analysis to [3], the global minimum of (8) is obtained. To
accelerate computational speed, we diagonalize the derivative operator after Fast
Fourier Transform (FFT) and this gives the solution:

S = F−1

(
W ·F (I) + β(F (∂x)

∗F (h) +F (∂y)
∗F (v))

W + β(F (∂x)∗F (∂x) +F (∂y)∗F (∂y)

)
(9)

where F is the FFT operator, F−1 is the IFFT operator and ∗ denotes the
complex conjugate.

Computing (h, v) when S is known: The objective function for (h, v) is

min
h,v

{
λ

β
· C(h, v) +

∑
p

{
(∂xSp − hp)

2
+ (∂ySp − vp)

2
}}

(10)

Similar to [3], the solution is given by

(hp, vp) =

⎧
⎨

⎩

(0, 0) (∂xSp)
2 + (∂ySp)

2 ≤ λ

β
(∂xSp, ∂ySp) otherwise

(11)

By estimating S with equation (9) and h, v with equation (11) alternatively,
a smooth image S can be extracted.



Perceptual Based Content Adaptive L0 Smoothing 303

4 Experimental Results

(a) (b)

(c) (d)

Fig. 1. Different selections of λ. Input image courtesy of Li Xu. (a) Input image. (b)
Smoothing image obtained by λ = 0.001 (c) Smoothing image obtained by λ = 0.01.
(d) Smoothing image obtained by λ = 0.05.

Readers are invited to read the electronic version with full-size figures in
order to better appreciate the differences among images. In this section, we
first evaluate the choice of λ in (7). As shown in Fig. 1, the smaller λ is, the
more similar to the input image the smooth image is, the larger λ is, the less
information is decomposed into the smooth layer. This is because if λ is large in
(7), the first term will affect more on the result, which results in less none-zero
gradients, the result image will be smoother. If λ is small, the second term will
effort more on the result and this renders the result image to be more similar to
the input image.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Comparison of the decomposed results. To better appreciate the difference,
the negative images of the detail images are given. Input image courtesy of Li Xu.
(a) Smoothing layer obtained by the scheme in [3]. (b) Smoothing layer obtained by
the proposed scheme. (c) Detail layer obtained by the scheme in [3]. (d) Detail layer
obtained by the proposed scheme. (e) Closeups of (a) and (b). (f) Closeups of (a)
and (b).

Then we compare the decomposition result by our scheme with scheme in [3]
by choosing the same parameters for both schemes. From Fig. 2, it is seen that
with the proposed method, the edges are more clear in the smooth layer than
the result in [3] while there are less edges in the detail layer by the proposed
method. For example, the horse legs are decomposed into the detail layer by the
scheme in [3], while into the smooth layer with the proposed scheme. The horse
legs are more clear in the smooth layer based on our scheme. All these can be
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Comparison of smoothing results. (a) First input image from [2]. (b) Second
input image, image courtesy of Norman Koren. (c) Result image obtained by the scheme
in [3]. (d) Result image obtained by the scheme in [3]. (e) Result image by the proposed
scheme. (f) Result image obtained by the proposed scheme. (g) Closeups of (c) and
(e). (h) Closeups of (d) and (f).
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Comparison of detail enhanced results. (a) Result image obtained by the scheme
in [3]. (b) Result image obtained by the scheme in [3]. (c) Result image obtained by
the proposed scheme. (d) Result image obtained by the proposed scheme. (e) Closeups
of (a) and (c). (f) Closeups of (b) and (d).

easily observed in the closeups of Fig. 2(a) and Fig. 2(b) as shown in Fig. 2(e)
and Fig. 2(f). From these results, we can conclude that our scheme can preserve
edges in the smooth layer better than the existing L0 based smooth scheme in [3].
Additional two sets of images are also tested and presented in Fig. 3.

Finally, we compare the detail enhance results by our scheme and the scheme
in [3]. The detail enhanced images are generated by adding the detail layers to
the source images. The original L0 smoothing scheme in [3] may decompose edges
into detail layer. As a result, the result image may be over sharpened around
edges. As shown in Fig. 4(a) and 4(c) which are generated by the scheme in [3],
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several regions are much darker or whiter than those in Fig. 4(b) and 4(d) which
are generated by the proposed scheme. A lot of details are missing in Fig. 4(a)
and 4(c) in these regions. Based on all the experimental results illustrated, our
scheme can give better results.

5 Conclusion

In this paper, a content adaptive L0 norm based smoothing scheme has been
proposed by using a content adaptive weighted fidelity term with larger weights
given to the edges and smaller weights to the flat areas. As a result, the resulting
image can preserve more edges and smooth the smoothing areas better than
existing L0 norm based smoothing scheme.
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