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Abstract—Guided image filter (GIF) is a well-known local filter
for its edge-preserving property and low computational com-
plexity. Unfortunately, the GIF may suffer from halo artifacts
because the local linear model used in the GIF cannot represent
the image well near some edges. In this paper, a gradient domain
guided image filter is proposed by incorporating an explicit
first-order edge-aware constraint. The edge-aware constraint
makes edges be preserved better. To illustrate efficiency of the
proposed filter, the proposed gradient domain guided image filter
is applied for single image detail enhancement, tone mapping of
high dynamic range (HDR) images and image saliency detection.
Both theoretical analysis and experimental results prove that the
proposed gradient domain guided image filter can produce better
resultant images, especially near the edges where halos appear
in the original GIF.

Index Terms—Guided image filter, gradient domain, edge-
preserving, detail enhancement, high dynamic range, saliency
detection

I. INTRODUCTION

Edge preserving smoothing is required by lots of applications
in image processing, computation photography and computer
vision, such as image detail enhancement [1], tone mapping
of high dynamic range (HDR) images [2], joint upsampling
[3], structure extraction from texture [4] and correspondence
search [5]. With an edge-preserving smoothing algorithm, the
details in the input image will be smoothed while the edges
be preserved. The detail layer of the input image can also be
obtained by subtracting the smoothed image from the input
image. By amplifying the detail layer, a detail enhanced image
is produced. Therefore, edge-preserving smoothing algorithms
can also be used as edge-preserving enhancing/decomposition
algorithms.

All the edge-preserving decomposition algorithms can be
separated into two categories: one is local filter based algo-
rithms such as median filter [6], bilateral filter (BLF) [7],
its accelerated versions [2], [8], [9] and its iterative version
[11], guided image filter (GIF) [10] and weighted guided
image filter(WGIF) [17], the other is global optimization
based algorithms such as total varition (TV) [12], its iterative
shrinkage approach [13] and its extension [4], weighted least
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squares (WLS) [14] and its accelerated version, fast weighted
least squares (FWLS) [15], and L0 norm gradient minimiza-
tion [16]. The global optimization based filters always give
better results. All these algorithms are obtained by solving an
optimization problem. The optimization problem is formulated
as combination of a fidelity term and a regularization smooth
term. With different fidelity terms or different regularization
terms, different methods are proposed and different results are
established. All these problems are solved after a number of
iterations, so these global optimization based algorithms are
usually very time consuming. An interesting concept of texture
removal filter was firstly proposed in [4], the structure texture
of the image was removed via solving a total variation based
optimization problem. In [21], a patch based solution was
proposed. In [22], a bilateral texture filter was proposed to
remove texture in images. In the rolling guidance filter [11],
the joint bilateral filter was iteratively invoked a few times. As
a result, the texture in the image are removed. The local filter
based filters usually have better efficiency, but the resultant
image may suffer from artifacts. Median filter, widely known
as an image de-noise filter, can also be used as a simple edge-
preserving decomposition filter. Weighted median filter [18]
can filter images with the weight from a guidance image, but
the the speed could be an issue. In [19], an interesting constant
time weighted median filter was proposed. In [20], a novel fast
weighted median filter was proposed, the fast implementation
makes the weighted median filter more practical. Bilateral
filtering (BLF) [7] processes images by combining a range
filter with a domain filter to preserve edges. It is a simple and
widely used weighted average filter, but it may suffer from
gradient reversal artifacts near some edges when used for detail
enhancement [2], [14]. Guided image filter (GIF) [10] was
proposed to avoid gradient reversal artifacts and it is derived
from a local linear model. The main idea is using a linear
transform to represent the pixel values in a window. Different
from other algorithms, the GIF computes the resulting image
by taking the structure of a guidance image into consideration
and it is one of the fastest edge-preserving smoothing filters.
Nevertheless, the model can not represent the image well near
some edges. As a result, there may be some halos in the images
[10]. This happens in some GIF based applications and it
is most apparent in the detail enhanced images obtained by
the GIF. The halos reduce the visual quality of the resulting
images, and thus it is the main drawback of the GIF. In
[17], a weighted guided image filter (WGIF) was proposed to
reduce the halo artifacts of the GIF. An edge aware factor was
introduced to the constraint term of the GIF, the factor makes
the edges preserved better in the result images and thus reduces
the halo artifacts. However, zeroth-order (intensity domain)
constraints are specified to get desired pixel values and first-
order (gradient domain) constraints to smooth the pixel values
in both the GIF and the WGIF. Since there are no explicit
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constraints to treat edges in both of them, they cannot preserve
edges well in some cases because they consider image filtering
process and edge-preserving process together. It is widely
believed that gradients are integral to the way in which human
beings perceive images, and human cortical cells could be
hard wired to preferentially respond to high contrast stimulus
in their receptive fields [23], which directly correlate with
gradients in an image. It is thus desired to design a new local
filter which has explicit constraints to treat edges so as to
make the gradient of the input image and output image be
more similar.

In this paper, a gradient domain guided image filter is proposed
by incorporating an explicit first-order edge-aware constraint.
The proposed filter is based on local optimization and the cost
function is composed of a zeroth order data fidelity term and a
first order regularization term. The regularization term includes
an explicit edge aware constraint which is different from the
regularization terms in both the GIF [10] and the WGIF [17].
As a result, the factors in the new local linear model can
represent the images more accurately near edges. Edges are
preserved much better. In addition, compared with the WGIF
in [17], the edge-aware factor is multi-scale while it is single
scale in the WGIF. The large scale weight cooperates with the
small scale weight proposed in the WGIF, becoming a multi-
scale weight. The multi-scale factor can separate edges of an
image from fine details of the image better. So the performance
is highly improved, especially when fine details of an image
is enhanced. Similar to the GIF in [10] and the WGIF in [17],
the proposed filter also avoids gradient reversal. In addition,
the complexity of the proposed filter is O(N) for an image
with N pixels which is the same as that of the GIF in [10] and
the WGIF in [17]. These features allow many applications of
the proposed filter in the fields of computational photography
and image processing. The proposed filter is first applied for
single image detail enhancement and tone mapping of HDR
images. Experimental results of both applications show that the
resultant algorithms produce images with better visual quality
than both the GIF in [9] and the WGIF in [14]. Besides single
image detail enhancement and tone mapping of HDR images,
one new application is proposed in this paper, namely it is
used as a post-processing tool for image saliency detection.
Experimental results show the proposed gradient domain GIF
can increase the accuracy of saliency detection.

The paper is organized as follows. Section II introduces the
related works on guided image filtering. Then, the gradient
domain guided image filtering is proposed in Section III.
Followed by the applications and experimental results of the
proposed filter in Section IV. Finally, Section V concludes this
paper.

II. RELATED WORKS ON GUIDED IMAGE FILTERING

In the GIF, there are a guidance image G and an image to be
filtered X . They could be identical. Let Ωζ1(p) be a square
window centered at a pixel p of a radius ζ1. It is assumed
that the output image Ẑ is a linear transform of the guidance

image G in the window Ωζ1(p′) [24], [25]:

Ẑ(p) = ap′G(p) + bp′ ,∀p ∈ Ωζ1(p′), (1)

where ap′ and bp′ are two constants in the window Ωζ1(p′).
Their values are obtained by minimizing a cost function
E(ap′ , bp′) which is defined as

E =
∑

p∈Ωζ1 (p′)

[(ap′G(p) + bp′ −X(p))2 + λa2
p′ ], (2)

where λ is a regularization parameter penalizing large ap′ . The
optimal values of ap′ and bp′ are computed as

ap′ =
µG�X,ζ1(p′)− µG,ζ1(p′)µX,ζ1(p′)

σ2
G,ζ1

(p′) + λ
, (3)

bp′ = µX,ζ1(p′)− ap′µG,ζ1(p′), (4)

where � is the element-wise product of two matrices.
µG�X,ζ1(p′), µG,ζ1(p′) and µX,ζ1(p′) are the mean values of
G�X , G and X in the window Ωζ1(p′), respectively.

The GIF is one of the fastest edge-preserving local filters and
it outperforms the bilateral filter [7] in the sense that the GIF
can avoid gradient reversal artifacts. However, the value of λ
in the GIF [10] is fixed. As such, halos are unavoidable for
the GIF in [10] when it is forced to smooth edges. A content
adaptive GIF was proposed in [17] to overcome the problem.
The cost function in Equation (2) is replaced by the following
one:

E =
∑

p∈Ωζ1 (p′)

[(ap′G(p) + bp′ −X(p))2 +
λ

ΓG(p′)
a2
p′ ], (5)

where ΓG(p′) is an edge aware weighting and it is defined by
using local variances of 3×3 windows of all pixels as follows:

ΓG(p′) =
1

N

N∑
p=1

σ2
G,1(p′) + ε

σ2
G,1(p) + ε

, (6)

σ2
G,1(p′) is the variance of G in the window Ω1(p′). ε is a

small positive constant and its value is selected as (0.001×L)2

while L is the dynamic range of the input image. All pixels
in the guidance image are used in the computation of ΓG(p′).
In addition, the weighting ΓG(p′) measures the importance of
pixel p′ with respect to the whole guidance image. Due to the
box filter in [10], the complexity of ΓG(p′) is O(N) for an
image with N pixels.

The optimal values of ap′ and bp′ are computed as

ap′ =
µG�X,ζ1(p′)− µG,ζ1(p′)µX,ζ1(p′)

σ2
G,ζ1

(p′) + λ
ΓG(p′)

, (7)

bp′ = µX,ζ1(p′)− ap′µG,ζ1(p′). (8)

The WGIF in [17] can be applied to reduce halo artifacts.
However, both the GIF and the WGIF specify intensity-
domain constraints (i.e., zeroth-order constraints) to obtain
desired pixel values and gradient-domain constrains (i.e., first-
order constraints) to smooth the pixel values over space
and time. There are no explicit constraints to treat edges in
both methods. Image filtering is usually an image coarsening
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process accompanying with image smoothing. When image
filtering and edge-preserving are considered together, edges
may be smoothed inevitably. As a result, these edge-preserving
methods cannot preserve edges well in some cases [26]. In
the next section, a gradient domain GIF is introduced which
includes an explicit first-order edge-aware constraint. The new
constraint can be seamlessly integrated into the WGIF.

III. GRADIENT DOMAIN GUIDED IMAGE FILTERING

Inspired by the Gradientshop in [26] and [27], a gradient
domain GIF is introduced in this section. The proposed filter
includes an explicit first-order edge-aware constraint and it
thus preserves edges better than both the GIF and the WGIF.

A. A New Edge-Aware Weighting

A new edge-aware weighting Γ̂G(p′) is defined by using local
variances of 3×3 windows and (2ζ1 +1)×(2ζ1 +1) windows
of all pixels as follows:

Γ̂G(p′) =
1

N

N∑
p=1

χ(p′) + ε

χ(p) + ε
, (9)

where χ(p′) is defined as σG,1(p′)σG,ζ1(p′), ζ1 is the window
size of the filter. It is usually set to 16 in detail manipulation
applications. The weighting Γ̂G(p′) measures the importance
of pixel p′ with respect to the whole guidance image. Due to
the box filter in [10], the complexity of Γ̂G(p′) is O(N) for
an image with N pixels.

(a) Input image (b) ΓG(p′) (c) ΓG(p′) (d) Γ̂G(p′)

Fig. 1: Comparison of ΓG(p′) and Γ̂G(p′). The window size
of (b) and (c) are 3×3 and 33×33, respectively. 33 is selected
here because the default ζ1 in GIF is 16.

The comparison of ΓG(p′) and Γ̂G(p′) of an image are shown
in Fig. 1. It is seen that, with this new weighting, the edges
are detected more accurately. With the new weighting, one
pixel will be detected as an edge pixel when both of its two
scale variances are large. Compared with the weighting of
the WGIF in [17], fewer details are detected as edges in the
proposed multi-scale weighting. For example, there are more
dots on the petals in Fig. 1(b) than Fig. 1(d), and the edges are
much wider in Fig. 1(c) than Fig. 1(d). As a result, fine details
are enhanced better by the proposed weighting. In addition,
σG,ζ1(p′) is already calculated in the original GIF algorithm.
So the new edge aware factor is more accurate than the factor
in the WGIF with negligible increment of the computation
time.

B. The Proposed Filter

It is shown in the linear model (1) that ∇Ẑ(p) = ap′∇G(p).
Clearly, the smoothness of Ẑ in Ωζ1(p′) depends on the value
of ap′ . If the value of ap′ is 1, the edge is then well preserved.
This is expected if the pixel p′ is at an edge. On the other hand,
if the pixel p′ is in a flat region, it is then expected that the
value of ap′ is 0 such that the flat region is well smoothed.
Based on the observation, a new cost function is defined as

E =
∑

p∈Ωζ1 (p′)

[(ap′G(p)+bp′−X(p))2 +
λ

Γ̂G(p′)
(ap′−γp′)2],

(10)
where γp′ is defined as

γp′ = 1− 1

1 + eη(χ(p′)−µχ,∞)
, (11)

µχ,∞ is the mean value of all χ(p). η is calculated as
4/(µχ,∞ − min(χ(p))). It is worth noting that the value of
γp′ approaches 1 if the pixel p′ is at an edge and 0 if it is in
a smooth region. In other words, the value of ap′ is expected
to approach 1 if the pixel p′ is at an edge and 0 if it is in
a smooth region. As such, the proposed filter is less sensitive
to the selection of λ. Subsequently, edges could be preserved
better by the proposed filter than both the GIF and the WGIF.

The optimal values of ap′ and bp′ are computed as

ap′ =
µG�X,ζ1(p′)− µG,ζ1(p′)µX,ζ1(p′) + λ

Γ̂G(p′)
γp′

σ2
G,ζ1

(p′) + λ
Γ̂G(p′)

, (12)

bp′ = µX,ζ1(p′)− ap′µG,ζ1(p′). (13)

The final value of Ẑ(p) is given as follows:

Ẑ(p) = āpG(p) + b̄p, (14)

where āp and b̄p are the mean values of ap′ and bp′ in the
window, respectively computed as

āp =
1

|Ωζ1(p)|
∑

p′∈Ωζ1 (p)

ap′ ; b̄p =
1

|Ωζ1(p)|
∑

p′∈Ωζ1 (p)

bp′ , (15)

and |Ωζ1(p′)| is the cardinality of Ωζ1(p′).

C. Analysis of the Proposed Filter

For easy analysis, the images X and G are assumed to be the
same. Two cases are studied as below.

1) The pixel p′ is at an edge. The value of γp′ is usually
1. The value of ap′ is computed as

ap′ =
σ2
G,ζ1

(p′) + λ
Γ̂G(p′)

σ2
G,ζ1

(p′) + λ
Γ̂G(p′)

= 1. (16)

The value of ap′ is 1 regardless of the value of λ. Clearly,
the value of ap′ is closer to 1 than both ap′ in the GIF
[10] and ap′ in the WGIF [17] if the pixel p′ is at an
edge. This implies that sharp edges are preserved better
by the proposed filter than both the GIF and the WGIF.
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2) The pixel p′ is in a flat area. The value of γp′ is usually
0 and the value of Γ̂G(p′) is usually smaller than 1. The
value of ap′ is computed as

ap′ =
σ2
G,ζ1

(p′)

σ2
G,ζ1

(p′) + λ
Γ̂G(p′)

. (17)

Since the value of ap′ is 1 regardless of the choice of
λ if the pixel p′ is at an edge, a larger λ is selected in
the proposed filter than the λ in the GIF and the WGIF
because the selection will not affect the preservation of
edges by the proposed filter. Obviously, this results in
that the value of ap′ is closer to 0 if the pixel p′ is in a
flat area. This means that the proposed filter smooth the
flag area better than both the GIF and the WGIF.

(a)

Fig. 2: 1-D illustration of the GIF, the WGIF and the proposed
gradient domain GIF. ζ1 = 16, λ = 1 in all the three
algorithm. The input data is obtained from the middle row
of the red channel in Fig. 1 (a).

To verify the analysis above, one smoothing result is presented.
To better observe the difference, we only show the 1 dimension
value. As shown in Fig.2, edges are preserved better by the
proposed filter than both the GIF in [10] and the WGIF in
[17]. From the zoomed-in patches showed in the figure, it is
seen that the output values of the proposed filter are almost the
same as the input values near edges while the output values
of the GIF and the WGIF are far away from the input values.
This proves our previous analysis that the gradient constraint
can make the result more similar to the input data near edges.
So the proposed gradient domain guided image filtering can
preserve edges better than the GIF and the WGIF.

IV. APPLICATIONS OF THE NEW FILTER

In this section, the proposed gradient domain guided image
filter is adopted to study single image detail enhancement,
tone mapping of HDR images and saliency detection. Readers
are invited to read the electronic version with full-size figures
in order to better appreciate the differences among images.

A. Single Image Detail Enhancement

Single image detail enhancement is a typical example to
compare performance of different filters from both the halo

(a) λ = 0.012 (b) λ = 0.052 (c) λ = 0.12 (d) λ = 0.22

Fig. 3: Comparison of the selection of parameter λ. The
images of each row are the detail layers of GIF, the detail
enhancement results of GIF, the detail layers of the proposed
filter, and the detail enhancement results of the proposed filter.

artifacts and the gradient reserve artifacts point of view. The
filter image and the guidance image are identical for single
image detail enhancement. The output image of the proposed
filter would be an edge-preserved smoothing image. Then the
detail layer of the input image can be obtained by calculating
the difference between the input image and the output image.
A detail enhanced image will be produced by amplifying the
detail layer. In the following, we add four times of the detail
layer to the input image to get the detail enhanced image.

First we compare the selection of parameter λ in Eq. 10 and
the λ in the GIF. The results are shown in Fig. 3. From left to
right, it can be seen that with the increasing of λ, there will
be more details in the detail layer and this results in a sharper
detail enhanced image. On the other hand, it may cause more
halo artifacts near the edges (e.g. around the flower, green,
black artifacts) for larger λ.

At the same time, the difference between the proposed filter
and the GIF can be seen in Fig. 3. There are more edges in
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(a) GIF (b) WGIF (c) the Proposed (d) BLF (e) L0 (f) FWLS

Fig. 4: Comparison of detail enhancement results.The images of each row are the detail enhanced images, the detail layers
and two sets of zoom-in patches of the detail enhanced image, respectively. λ = 0.12 in the GIF and in the WGIF, λ = 0.152

in the proposed filter, σs = 16, σr = 0.1 for the BLF, λ = 0.01 in the L0 smoothing, and σ = 0.01, λ = 302 in the FWLS. The
window size in the GIF, WGIF, BLF and the proposed filter are 33× 33.

TABLE I: Scores of detail enhanced images by the GIF and
the proposed filter

Input 0.012 0.052 0.12 0.22

GIF 36.87 38.97 40.25 34.33 28.86
Proposed 36.87 37.69 43.26 43.21 41.39

the detail layer decomposed by the GIF than by the proposed
gradient domain GIF. The same as the GIF, the results of the
proposed filter are sharper with the increasing of λ. However,
it can be seen that the result of proposed algorithm has less
artifacts even with a larger λ. In this case, we can use a larger
λ with the proposed filter without worrying about the halo
artifacts.

Next we use the blind object image quality metric in [28] to
evaluate the detail enhanced image quality. The scores with
this metric of the input and result images shown in Fig. 3 are
given in the following table:

With this metric, a higher value represents a higher quality.

Clearly, the proposed gradient domain outperforms the original
GIF in [10]. From the table, we can also get that the score
initially increases and then decreases as λ increases. This is
because over-sharpened images may be resulted from exces-
sively large values of λ, which are unnatural. At the same time,
only the scores of two images generated by the original GIF
are higher than the input image, whereas all the four images
generated by the proposed gradient domain GIF have higher
scores than the input image. Again, this shows we can use a
larger λ with the proposed filter without worrying about the
halo artifacts.

Now the proposed filter is compared with the GIF in [10], the
WGIF in [17], the BLF in [7], the L0 norm minimization in
[16] and the FWLS in [15]. From the detail enhanced image
shown in the first row of Fig. 4, it is seen almost all the
algorithms (except L0 minimization because it is a sparse
based algorithm) produce similar results with overall view,
the differences are edges. From the detail layers shown in the
second row of Fig. 4, it is seen that the result of the WGIF is
better than the original GIF, the BLF, the L0 minimization and
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(a) Input image (b) Result image of GIF in [10] (c) Result image of WGIF in [17] (d) Result image of proposed filter

(e) Difference of (c) and (d) (f) Result image of BLF in [7] (g) Result image of L0 in [16] (h) Result image of FWLS in [15]

(i) Zoom-in patch of (b) (j) Zoom-in patch of (c) (k) Zoom-in patch of (d) (l) Zoom-in patch of (f) (m) Zoom-in patch of (g) (n) Zoom-in patch of (h)

(o) Zoom-in patch of (b) (p) Zoom-in patch of (c) (q) Zoom-in patch of (d) (r) Zoom-in patch of (f) (s) Zoom-in patch of (g) (t) Zoom-in patch of (h)

(u) Result image of the WGIF with
large λ = 0.52

(v) Result image of the proposed filter
with large λ = 0.52

(w) Detail layer of the WGIF with
large λ = 0.52

(x) Detail layer of the proposed filter
with large λ = 0.52

Fig. 5: Comparison of detail enhancement results.λ = 0.12 in the GIF and in the WGIF, λ = 0.152 in the proposed filter,
σs = 16, σr = 0.1 for the BLF, λ = 0.01 in the L0 smoothing, and σ = 0.01, λ = 302 in the FWLS. The window size in the
GIF, WGIF, BLF and the proposed filter are 33× 33.

the FWLS. There are less edges in the detail layer of the WGIF
than the others, but they are still much more apparent than the
detail layer generated by the proposed filter. It is worth noting
that the λ value in the proposed method is larger than the
values of λ in both the GIF and the WGIF. We can conclude
from Fig. 3 that a larger λ may produce more artifacts, but
a larger λ in the proposed gradient domain GIF produce less
artifacts than the GIF and the WGIF. From the zoom-in patches
shown in Fig. 4, it is observed that the results of the proposed
filter has less artifacts than all the other algorithms. There are
halo artifacts in the results of the GIF, the WGIF and the BLF,
while there are reversal artifacts in the results of the BLF, the
l0 minimization smoothing and the FWLS, but the proposed

filter produces neither halo artifacts nor reversal artifacts.

From Figs. 5(a)-(t), the same conclusion can be drawn. The
difference between Fig. 5 (c) and Fig. 5 (d) is presented in
Fig. 5 (e). It can be seen that the differences are mainly near
edges. There are more halos in Fig. 5 (c) than Fig. 5 (d).

To better compare the WGIF and the proposed gradient
domain GIF, one more set of images are shown in Figs. 5(u)-
(x). These images are generated with a large λ, by setting it
to 0.52. It is seen that there are apparent black halos around
the flowers in Fig. 5(u). From the detail layers shown in Figs.
5(w)-(x), it is observed that lots of edges are separated into
the detail layer by the WGIF. This is the reason of the halo
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(a) Result image by the GIF (b) Result image by the WGIF (c) Result image by the proposed GIF

(d) Detail layer by the GIF (e) Detail layer by the WGIF (f) Detail layer by the proposed GIF (g) Difference of (e) and (f)

Fig. 6: Comparison of tone mapping results of HDR image “office”. The parameters are ζ1 = 15, λ = 1 for the GIF and the
WGIF, and the parameters are ζ1 = 15, λ = 2 for the proposed filter.

(a) Result image by the GIF (b) Result image by the WGIF (c) Result image by the proposed GIF

(d) Detail layer by the GIF (e) Detail layer by the WGIF (f) Detail layer by the proposed GIF (g) Difference of (e) and (f)

Fig. 7: Comparison of tone mapping results of HDR image “belgium house”. The parameters are ζ1 = 15, λ = 1 for the GIF
and the WGIF, and the parameters are ζ1 = 15, λ = 2 for the proposed filter.

artifacts. With our proposed gradient domain constraint, the
edges are preserved in the base layer even if λ is very large,
so there is no halo in the detail enhanced image. This implies
that the proposed filter outperforms the WGIF in the sense
that the proposed filter is less sensitive to the value of λ.

We also use the blind object image quality metric in [28]
to compare different algorithms. The scores with this metric
of the input and result images shown in Fig. 4 and 5 are
summarized in the following table:

TABLE II: Scores of enhanced images by different filters

Input GIF WGIF Ours BLF L0 FWLS
Fig.4 36.9 34.3 40.7 42.4 39.6 36.1 33.7
Fig.5 29.7 27.8 37.1 44.9 35.5 32.2 28.2
Average 33.1 31.1 38.9 43.7 37.6 34.2 31.0

The results prove that the proposed gradient domain GIF is
better than the original GIF in [10], the WGIF in [17], the
BLF in [7], the L0 norm minimization in [16] and the FWLS
in [15].
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(a) Input image (b) SF (c) GS (d) MR (e) SO (f) Ours (g) Ground Truth

Fig. 8: Comparison of saliency detection. The parameters are ζ1 = 1, λ = 0.12 for the proposed filter.

B. Tone mapping of HDR images

Similar to single image detail enhancement, tone mapping of
HDR images is a widely studied application to verify the
performance of an edge-preserving image filter. So we also
apply the proposed filter in HDR image tone mapping to
compare with the other guided filter based algorithms.

HDR images are usually generated from several differently
exposed images of the same scene, so an HDR image has
more information than each of the differently exposed images.
Limited by the dynamic range of monitors and printers nowa-
days, an HDR image has to be tone mapped to a low dynamic
range (LDR) image. In an HDR tone mapping algorithm, the
HDR image is first decomposed into a base layer and a detail
layer, then the base layer is compressed and the detail layer
is amplified. By adding up the compressed base layer and the
amplified detail layer, a tone mapped LDR image is produced.
The produced LDR image keeps most of the information in
the HDR image with a much lower dynamic range. Similar to
other tone mapping algorithms, the HDR image is decomposed

to two layers by the proposed filter. The large contrast of
the HDR image makes the variance change tremendously, so
Gaussian blur is used to the variance before calculating the
weight to make the result more natural.

Two sets of HDR tone mapping results are shown in Fig. 6
and Fig. 7. It is seen that the halo artifacts are very apparent
in the results of the GIF in [10]. Even though the halo artifacts
are reduced by the WGIF in [17], there are still visible halo
artifacts. It is further improved by the proposed filter. The
halo artifacts are more apparent to be observed from the detail
image. For example, the edges in the windows in both Fig. 6
and Fig. 7 are more apparent in the results of the GIF and the
WGIF than the proposed filter although the λ in the proposed
filter is larger than the other two filters. Whereas there are more
details in the result image of the proposed filter, for example,
there are more textures on the floor in Fig. 7(c) than Fig.
7(b) produced by the WGIF. It is easier to be observed in the
zoom-in patches in Fig. 7(b) and Fig. 7(c). It has been proven
previously that a larger λ can produce more detailed image,
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but may cause more halos in the guided filter based algorithm,
so this demonstrates once again the proposed filter is better
than the GIF and the WGIF. To observe the difference, the
differences between the detail layer by the WGIF and by the
proposed filter are also provided. For visualization purposes,
the differences are amplified 5 times. It is seen that there are
more halos in the results of the WGIF than the results of the
proposed filter. We can conclude that the resultant image of
the proposed filter generated with a larger λ has less halos but
more details than the resultant image of the WGIF.

C. Image Salience Detection

The Gaussian filter is widely used in existing Saliency detec-
tion algorithms to refine Saliency maps. In this subsection, we
will show that the proposed filter can be applied to improve the
Saliency maps, even for the latest super-pixel based Saliency
detection algorithm.

Visual saliency reflects how much a region stands out from the
image. It has been a fundamental problem in image processing
and computer vision with many applications, such as image
compression [29], image cropping [30], tone mapping of HDR
images [31], object detection and recognition [32].

In early stages, most saliency detection approaches are block
based . Gaussian smoothing is widely used [33], [34] as a post-
processing procedure to change the computed visual saliency
image to a saliency map in salience detection algorithms.
It can make the image smoother and reduce the effect of
noises. Recently, many region-based approaches [35]–[38]
are proposed with the development of superpixel algorithms
[39], [40]. The Gaussian filter is no longer a suitable post-
processing filter for saliency detection, because it may blur the
edges of the saliency map. Superpixel algorithm is a roughly
segmentation algorithm, so the objects may not be segmented
correctly. In the following, a new post-processing method is
introduced for the saliency detection algorithms which can
improve the performance of these algorithms.

In [35], an optimization based saliency detection algorithm
was proposed. The saliency optimization procedure can be
adopted to many other superpixel based algorithm, such as
[36]–[38]. Here the proposed filter is applied to further im-
prove the algorithm in [35]. As a post-processing procedure, it
can be adopted to almost all the saliency detection algorithms,
especially the superpixel based algorithms.

After obtaining the final saliency map with the algorithm in
[35], the saliency map is filtered with our proposed gradient
domain guided image filter. The luminance channel of the
input image is selected as the guidance image. With the
proposed filter, the structure of the input image can be moved
to the saliency map. This makes the pixels near edge separated
more accurately. In addition, as the computational complexity
is very low, negligible time is added. The running time is
about 0.04 seconds for a 400*300 image on the computer
with a Intel Core i7-3770 CPU @3.2GHZ and 8GB of RAM.
Similar results can be obtained with other edge aware joint

image filtering, including the GIF in [10], the WGIF in [17],
the BLF in [7] and so on, but the GIF based algorithms usually
have better computation efficiency.

(a) PR curves

(b) Zoom-ins of the PR curves

Fig. 9: PR curves comparison of saliency detection on dataset
ASD

Two datasets are tested to verify the proposed port-processing
algorithm. The first dataset is the ASD dataset [41], in which
1000 images from the MSRA-B datasets [42] are labled
with a binary pixel-wise object mask. The second dateset is
the Berkeley Segmentation Dataset (BSD) dataset [43] with
more complex scene. We compare the following four recently
proposed saliency detection approaches: Saliency Filter (SF)
[36], Geodesic Saliency (GS) [37], Manifold Ranking (MR)
[38] and Saliency Optimization (SO) [35]. Four sets of images
from each dataset are shown in Fig. 9. From all the images,
it is seen that the edge shape of our algorithm is closer to the
ground truth image, e.g., the lines of the cross are straighter.

Similar to many other saliency detection approaches, the
precision-recall (PR) curves and the F-measure are adopted
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(a) PR curves

Fig. 10: PR curves comparison of saliency detection on dataset
BSD

to quantitatively evaluate our contribution. Precision is the
percentage of salient pixels correctly assigned, and recall is
the percentage of the detected salient pixels compared with
the ground truth image. The PR curves on ASD and BSD are
shown in Fig. 9 and Fig. 10, respectively. It is seen that both
the precision and recall are higher with our post-processing.

F-measure was proposed in [41]. In F-measure, an adaptive
threshold is used. The threshold is calculated as

Tα =
2

W ×H

W∑
x=1

W∑
y=1

S(x, y) (18)

where x and y are the spatial pixel indexes of the saliency
map S, W and H are the width and height of S, receptively.
In saliency detection, the Fβ is widely used. It is defined as

Fβ =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

(19)

Similar to other results [35]–[38], the value of β2 is set as 0.3.
The F-measures of the original and the proposed are 0.8784,
0.8789 on dataset ASD and they are 0.6448, 0.6480 on dataset
BSD. This proves our post-processing algorithm can indeed
improve the performance.

Finally, we compare several existing edge-preserving filters
with the proposed filter as post-processing tool for saliency
detection. The comparison algorithms are the bilateral filter
(BLF) [7], the weighted median filter (WMF) in [20] and the
rolling guidance filter (RGF) in [11]. The PR curves of these
filters are shown in Fig. 11. From the PR curves of the different
algorithms, we can draw a conclusion that all these filters can
yield comparable results in improving the saliency detection.
This is a new application of edge-preserving filters.

(a) PR curves on ASD

(b) PR curves on BSD

Fig. 11: Comparison of different filters. The parameters are
ζ1 = 1, λ = 0.12 for the proposed filter, σs = 3, σr = 0.05,
iteration = 4 for the rolling guidance filter, r = 3, σ = 25.5
for the weighted median filter and σs = 3, σr = 0.05 for the
bilateral filter.

V. CONCLUSION AND REMARKS

In this paper, a new gradient domain guided image filter
has been proposed by incorporating an explicit first-order
edge-aware constraint into the existing guided image filter.
Experimental results of image detail enhancement and HDR
image tone mapping show that the proposed filter produces
images with better visual appearance than the existing guided
filter based algorithms, especially around edges. In addition,
based on the new filter, a new saliency detection post-
processing method has been proposed, which can make the
saliency detection algorithms more accurate. It is reported
in [10] that there are many applications of guided image
filter such as the Flash/no-flash, RGB/NIR, dark-flash image
restoration applications. We believe that the proposed filter
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is also applicable to those applications. One more interesting
problem is on the extension of the proposed filter so as to
extract fine details from multiple images simultaneously by
the extended filter as in [44], [45]. They will be studied in our
future research.
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