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Abstract—Detail enhancement is required by many problems
in the fields of image processing and computational photography.
Existing detail enhancement algorithms first decompose a source
image into a base layer and a detail layer via an edge-preserving
smoothing algorithm, and then amplify the detail layer to produce
a detail-enhanced image. In this paper, we propose a new L0

norm based detail enhancement algorithm which generates the
detail-enhanced image directly. The proposed algorithm preserves
sharp edges better than an existing L0 norm based algorithm.
Experimental results show that the proposed algorithm reduces
color distortion in the detail-enhanced image, especially around
sharp edges.

Index Terms—detail enhancement, image smoothing, edge
preserving, gradient field, L0 norm.

I. INTRODUCTION

IMAGE detail enhancement algorithms can increase visual
appearance of images. They enhance fine details while

avoid halo artifacts and gradient reversal artifacts around
edges. The detail enhancement technique is a widely used
image editing tool. Existing detail enhancement algorithms are
based on edge-preserving decomposition algorithms. A source
image is first decomposed into a base layer which is formed
by homogeneous regions with sharp edges and a detail layer
which is composed of fine details or textures via the edge-
preserving decomposition algorithm, then a detail-enhanced
image is produced by amplifying the detail layer.

Image edge-preserving decomposition algorithms can be
divided into two categories: local filter based [1]–[5] and
global optimization based [7]–[10]. Median filter [1], a well-
known de-noise filter, can be used as an edge-preserving
decomposition filter. In [11], an iterative median filter was
used as an edge-preserving decomposition tool in a general-
ized unsharp masking algorithm. Bilateral filtering (BF) [3]
combines a range filter with a domain filter to preserve edges.
It is a simple and widely used local weighted average filter,
but it may exhibit gradient reversal artifacts near some edges
when used for detail enhancement [6], [8], [12]. A guided
image filter (GIF) [5] derived from a local linear model can
avoid the gradient reversal artifacts, thus it outperforms the BF.
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The computational cost of all the local filters is low. However
they suffer from halos near some edges [5]. This problem can
be overcome by using global optimization based filters. The
total variation filter [7] uses an L1 norm based regularization
term to remove noises in images, which is also considered as
an edge-preserving decomposition algorithm. Weighted Least
Squares (WLS) [8] based multi-scale decomposition algorithm
decomposes an image to two layers by solving a weighted least
square optimization problem. In [13], an accelerated iterative
shrinkage algorithm is proposed to decompose and enhance
image. Sparse models usually can give better result in image
processing algorithms [9], [14]. In [9], the L0 norm of the
gradient of image was used in the smoothing term. It can
preserve edges better than WLS. In [10], L1 fidelity is used in
the formulation instead of L2 fidelity which was used in [9].
In [15], the L0 norm based smoothing algorithm is introduced
to a detail enhancement scheme for fusion of differently
exposed images. In [16], it is used in a visual enhancement
algorithm for low backlight displays. In [17], the L0 norm
based smoothing algorithm is used for art-photographic detail
enhancement. All these papers [9], [10], [15]–[17] show the
L0 norm based algorithm can give better detail enhancement
results. But as stated in [9], the L0 norm based algorithms
may suffer from reversal halos near some edges. In [9], the
edges are adjusted by solving an optimization problem, which
could be very time-consuming. So it is desirable to design a
new L0 norm based detail enhancement algorithm.

In this paper, a new detail enhancement algorithm is pro-
posed to produce a detail-enhanced image. With the proposed
algorithm fine details can be amplified by enlarging all gradi-
ents in the source image except those of pixels at edges. The
algorithm is derived by solving a newly formulated L0 norm
based global optimization problem. Unlike the optimization
problem in [9], the optimization argument in our formulated
problem is the detail-enhanced image rather than the based
layer in [9]. An edge aware weighting is also incorporated
into the regularization term in the obtained algorithm. This
enables the edges to be preserved better by the proposed
algorithm. Experimental results illustrate that the better results
are produced with our algorithm than in [9]. It is worth noting
that edge aware weighting was recently used in [18], [19] to
get better image filter result. The proposed proposed algorithm
is different from all these existing papers in the sense that
our method provides the first order fidelity for pixels at edges
while the methods in [18], [19] only provided the zero order
fidelity for the pixels at edges.

The remainder of this paper is organized as follows. In the
next section, an L0 gradient minimization based image detail
enhancement scheme is introduced. In Section III, detail on
the solver of the scheme is presented. In Section IV, the dif-
ference between the original L0 norm based algorithm and the



2 IEEE SIGNAL PROCESSING LETTERS, VOL. X, NO. X, JUNE 2014

proposed algorithm are compared. In Section V experimental
results are illustrated to verify the performance of our proposed
schemes, and finally the paper is concluded in Section VI.

II. CONTENT ADAPTIVE DETAIL ENHANCE OPTIMIZATION

Enlarging the gradients of a source image is an effective
method to sharpen the image. However, halo artifacts and
gradient reversal artifacts could be produced if all the gradients
of the source image are enlarged. To reduce such effects,
only all the gradients except those of pixels at sharp edges
are enlarged. Such an idea is formulated as an L0 norm
based global optimization problem to derive an appropriate.
Same as existing global optimization problems, the proposed
performance index consists of a data fidelity term and a
regularization term. A lagrangian factor λ is used to adjust
the importance of the two terms to control the degree of the
enhancement. Based on these, the optimization problem is
formulated as follows:

min
E

{∑
p

(Ep − Ip)2 + λ · C(E −K ◦ I)
}
, (1)

where E is the detail-enhanced image, I is the input image, p
is the pixel index of the images, ◦ denotes the element-wise
product operator. For simplicity, we use Î to stand for K ◦ I .
Note that C(E− Î) is the L0 norm of the gradient field, which
equals the number of non-zero elements of the gradient field
of E − Î defined

C(E− Î) = #{p
∣∣ ∣∣∣∂x(Ep − Îp)∣∣∣+ ∣∣∣∂y(Ep − Îp)∣∣∣ 6= 0}, (2)

where # is a counting operator.
Without loss of generality, it is assumed that the detail layer

is enhanced k times in the final image. Kp is then computed
as follows:

Kp = 1 +
k

1 + eη·(Vp−V p)
(3)

where Vp is the variance of the pixels in the 3×3 neighborhood
of the p−th pixel, V p is the mean valve of all the local
variances. η is calculated as ln(0.01)/(min(Vp) − V p), it
guarantees the factors of small variance pixels be close to
1 + k. So with (3), the factors of small variance pixels are
close to 1 + k, and the factors of large variance pixels are
close to 1.

III. SOLVER

As the second term of (1) contains a discrete counting met-
ric, it is very difficult to be solved. Same as [9], we introduce
auxiliary matrices to approximate the solution. Consider the
following problem:

min
E,h,v

{∑
p

{
(Ep − Ip)2 + β

(
(∂x(Ep − Îp)− hp)

2

+ (∂y(Ep − Îp)− vp)2
)}

+ λ · C(h, v)

}
, (4)

where β is a parameter controlling the similarity between
auxiliary matrices h, v and ∂x(Ep − Îp), ∂y(Ep − Îp). When

β is large enough, the solution of optimization problem (4) is
equivalent to (1). Problem (4) is solved through alternatively
minimizing (h, v) and E. In each pass, one set of the vari-
ables is fixed as values obtained from the previous iteration.
Parameter β is set as a small value β0 at the beginning, and
it is multiplied by a constant κ each time. The process ends
when β is larger than βmax. In our experiment, we set κ as
2, β0 as 2 times of λ and βmax as 105. The details of the
solving process are given as below.

Computing E when h and v are known: The E estimation
subproblem corresponds to minimizing

min
E

{∑
p

{
(Ep − Ip)2 + β

(
(∂x(Ep − Îp)− hp)

2

+ (∂y(Ep − Îp)− vp)2
)}}

. (5)

By taking the derivative of the problem, the global minimum
of (5) is obtained. To accelerate computational speed, we di-
agonalize the derivative operator after Fast Fourier Transform
(FFT) and this gives the solution:

E = F−1(
F (I) + β(F (∂x)F (h+ Î) + F (∂y)F (v + Î))

F (1) + β(F (∂x)∗F (∂x) + F (∂y)∗F (∂y))
),

(6)
where F is the FFT operator, F−1 is the IFFT operator and
∗ denotes the complex conjugate.

Computing (h, v) when E is known: The (h, v) estimation
subproblem corresponds to minimizing

min
h,v

{
λ · C(h, v) +

∑
p

{
β
(
(∂x(Ep − Îp)− hp)

2

+ (∂y(Ep − Îp)− vp)2
)}}

. (7)

The solution is given by

(hp, vp) =

{
(0, 0), if ∂x(Ep − Îp)

2 + ∂y(Ep − Îp)
2 ≤ λ

β
(∂x(Ep − Îp), ∂y(Ep − Îp)), otherwise

(8)
The two subproblems have analytic solutions with a detailed

proof available in [9] in which a similar method is used. By
estimating E with equation (6) and h, v with equation (8)
alternatively, a detail-enhanced image E is obtained when β
is larger than βmax.

IV. COMPARISON WITH THE ORIGINAL L0 ALGORITHM

The original L0 smoothing algorithm in [9] is formulated
as

min
S

{∑
p

(Sp − Ip)2 + λ · C(S)
}
, (9)

where S is the edge-preserved smoothing image, I , λ , C(S)
and the subscript p are defined as the same as (1). After solving
the minimization problem, an edge-preserved smoothed image
S is obtained. Then the detail layer D of the input image can
be obtained by I − S.

In order to get a detail-enhanced image E, an amplified
detail layer is added to the source image. Suppose the detail
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(a) Input image (b) λ = 0.016 (c) λ = 0.032 (d) λ = 0.08 (e) λ = 0.32

Fig. 1. Comparison of enhancement result of image “tulips” with different selections of λ, k = 4 for all λ.

(a) Original L0 (b) Edge aware factor (c) Proposed algorithm (d) GIF (e) BF

Fig. 2. Comparison of detail enhancement results of image “tulips”. The parameters are λ = 0.01 in original L0 , λ = 0.16 in the proposed algorithm,
r = 16, ε = 0.12 for the GIF, and σs = 16, σr = 0.1 for the BF.

layer is amplified k times to the input image, then E = I+k ·
D. After simple algebra transformation, it can be shown that{

(Sp − Ip)2 = (
Ep−Ip
k )2

S = (k+1)·I−E
k

(10)

So the optimization problem (9) is equivalent to

min
E

{∑
p

(Ep − Ip)2 + λ · k2 · C( (k + 1) · I − E
k

)
}
, (11)

where C
(

(k+1)·I−E
k

)
is an L0 norm. It is noted that the value

of k in the denominator does not affect the value of the norm.
So it is equivalent to the following optimization problem:

min
E

{∑
p

(Ep − Ip)2 + λ · k2 · C
(
E − (k + 1) · I

)}
(12)

Compared to the proposed optimization problem in (1), it
can be found that our new proposed optimization problem tries
to make the gradients of pixels in flat regions of the enhanced
image be k+ 1 times of the input image and the gradients of
the edge pixels be the same as the input image. Therefore our
algorithm is closer to the ideal detail enhancement algorithm
than the original L0 norm based algorithm and thus our
algorithm is expected to produce better results.

(a) Input image (b) Original L0 (c) Edge aware factor

(d) Proposed algorithm (e) GIF (f) BF

Fig. 3. Comparison of detail enhancement results of image “lily”. The
parameters are λ = 0.01 in original L0, λ = 0.16 in the proposed algorithm,
r = 16, ε = 0.12 for the GIF, and σs = 16, σr = 0.1 for the BF.

V. EXPERIMENTAL RESULTS

In this section, we first evaluate the choice of λ in (1). As
shown in Fig. 1, λ controls the degree of the enhancement.
With a smaller λ, the final image will be more similar with the
input image; with a larger λ, the result image will be sharper.

Then experimental studies are conducted to compare the
proposed algorithm with the L0 norm based algorithm in [9],
the GIF in [5] and the BF in [3]. We first compare their
overall performances. The images in Fig. 2(a) and Figs. 2(c)-
(e) are resulting images by four different algorithms, obtained
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(a) Input image (b) Original L0

(c) Edge aware factor (d) Proposed algorithm

(e) GIF (f) BF

(g) Edge aware factor generated by a
hat function

(h) Enhancement result with hat func-
tion generated factor

(i) Zoom-in patch of Fig 4(d) (j) Zoom-in patch of Fig 4(h)

Fig. 4. Comparison of detail enhancement results of image “beach”. The
parameters are λ = 0.01 in original L0, λ = 0.16 in the proposed algorithm,
r = 16, ε = 0.12 for the GIF, and σs = 16, σr = 0.1 for the BF.

by adding 4 times of the detail layer to the input image. As
k2 is present in (12), the λ value of the proposed algorithm
should be k2 times larger than the λ in Eq. (9) to get a similar
result. So the λ used in our algorithm is 16 times larger than
in the original L0 algorithm. The result images of L0 norm
based algorithms are less dependent on local features. It is
observed that the resulting image of L0 norm based algorithms
are sharper and have more details than both the GIF and the
BF. In Fig. 2(b), the image of the edge aware factor K is
presented. We present the image of 1− (K − 1)/k for better
visual effect.

Then we compare the images by observing the zoom-in
patches of the result images. The zoom-in patches of Fig.
2(a) and Figs. 2(c)-(e) are presented. It is shown that both

the L0 norm based filter in [9] and the BF in [3] suffer from
the gradient reversal artifacts and the GIF in [5] suffers from
halo artifacts. Both artifacts are significantly reduced by our
proposed algorithm.

Additional two sets of images are also tested and presented
in Figs. 3 and Figs. 4, respectively. It is shown in Figs.3, both
the L0 norm based filter in [9] and the BF in [3] suffer from
the gradient reversal artifacts around the flower and the GIF
in [5] suffers from blue halo artifacts around the flower. In
Figs. 4, it is seen there are blue artifacts near the top of the
mountain in Fig. 4(b) and Fig. 4(f), and there are halos around
the mountains and shadows in Fig. 4(e). Based on all the
experimental results illustrated in the section, our algorithm
can preserve edges better than the methods in [3], [5], [9].
Therefore, both the gradient reversal artifacts and the halo
artifacts are reduced by using the proposed algorithm.

We then compare the experimental results by using two
image quality metrics in [20], [21]. The scores with the metric
in [20] of the input and result images are shown in the
following table:

Input L0 Proposed GIF BF
“Tulips” 7.37 5.26 5.01 4.95 4.90
“Lily” 6.55 3.17 3.22 3.27 3.28
“Beach” 3.63 3.72 3.51 4.50 3.73
Average 5.85 4.05 3.91 4.24 3.97

A smaller value indicates a higher quality. The average scores
prove our proposed algorithm generally gives better results
than the others. The metric in [21] is also used. The average
scores are 31.7, 30.8, 36.5, 32.8, 28.3, respectively. With this
metric, a higher value represents a higher quality. Clearly, the
proposed algorithm also outperformed the others in this case.
We also apply the metric in [21] to evaluate the selection of
parameter k. By using the first test image “tulips” with the
value of k tested from 1 to 10, the scores obtained are 33.3,
35.9, 40.7, 44.8, 47.7, 48.8, 48.3, 47.0, 45.5, 43.7, respectively.
So the score increases and then decreases as k increases.
This is because over sharpened images may be resulted from
excessively large values of k, which are unnatural.

Finally, we test a potential way to address the problem that
edge-preserving based detail enhancement algorithms usually
boost noises. We use a hat function [22] to replace the sigmoid
function in Eq. (3) to generate the factor matrix K. With this
hat function, the pixels in flat areas or at sharp edges are not
boosted in the enhanced image. As a result, both the flat areas
and the sharp edges are better preserved. It is seen that Fig.
4(h) has less noise than Fig. 4(d). For example, the sky is
“cleaner” as shown in Figs 4(i) and 4(j).

VI. CONCLUSION

In this paper, a new detail enhancement algorithm has been
proposed by formulating an L0 norm based optimization prob-
lem. In contrast to the existing detail enhancement algorithms,
the proposed algorithm produces a detail-enhanced image di-
rectly. Experimental results show that our algorithm produces
images with better visual appearance than the existing L0

norm based and several other detail enhancement algorithms,
especially around edges.
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